McAfee-Secured Website

Course name Software Testing Courses The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop: The Google Cloud for ML with TensorFlow, Big Data with Managed Hadoop

The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop Video Course

The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop Video Course is developed by Software Testing Courses Professionals to help you pass the The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop exam.

You Will Learn:

Was 21.99 USD
Now 19.99 USD

Description

This course will improve your knowledge and skills required to pass The Google Cloud for ML with TensorFlow, Big Data with Managed Hadoop exam.

Curriculum For This Course

  • 1. Introduction 7 Videos 01:05:34
    • Theory, Practice and Tests 10:26
    • Why Cloud? 09:43
    • Hadoop and Distributed Computing 09:01
    • On-premise, Colocation or Cloud? 10:05
    • Introducing the Google Cloud Platform 13:20
    • Lab: Setting Up A GCP Account 07:00
    • Lab: Using The Cloud Shell 06:01
  • 2. Compute Choices 13 Videos 01:32:14
    • Compute Options 09:16
    • Google Compute Engine (GCE) 07:38
    • More GCE 08:12
    • Lab: Creating a VM Instance 05:59
    • Lab: Editing a VM Instance 04:45
    • Lab: Creating a VM Instance Using The Command Line 04:43
    • Lab: Creating And Attaching A Persistent Disk 04:00
    • Google Container Engine - Kubernetes (GKE) 10:33
    • More GKE 09:54
    • Lab: Creating A Kubernetes Cluster And Deploying A Wordpress Container 06:55
    • App Engine 06:48
    • Contrasting App Engine, Compute Engine and Container Engine 06:03
    • Lab: Deploy And Run An App Engine App 07:29
  • 3. Storage 9 Videos 01:06:16
    • Storage Options 09:48
    • Quick Take 13:41
    • Cloud Storage 10:37
    • Lab: Working With Cloud Storage Buckets 05:25
    • Lab: Bucket And Object Permissions 03:52
    • Lab: Life cycle Management On Buckets 05:06
    • Lab: Running A Program On a VM Instance And Storing Results on Cloud Storage 07:09
    • Transfer Service 05:07
    • Lab: Migrating Data Using The Transfer Service 05:33
  • 4. Cloud SQL, Cloud Spanner ~ OLTP ~ RDBMS 7 Videos 00:54:46
    • Cloud SQL 07:40
    • Lab: Creating A Cloud SQL Instance 07:55
    • Lab: Running Commands On Cloud SQL Instance 06:31
    • Lab: Bulk Loading Data Into Cloud SQL Tables 09:09
    • Cloud Spanner 07:25
    • More Cloud Spanner 09:18
    • Lab: Working With Cloud Spanner 06:50
  • 5. BigTable ~ HBase = Columnar Store 6 Videos 00:54:18
    • BigTable Intro 07:57
    • Columnar Store 08:12
    • Denormalised 09:02
    • Column Families 08:10
    • BigTable Performance 13:19
    • Lab: BigTable demo 07:39
  • 6. Datastore ~ Document Database 2 Videos 00:20:52
    • Datastore 14:10
    • Lab: Datastore demo 06:42
  • 7. BigQuery ~ Hive ~ OLAP 11 Videos 01:30:56
    • BigQuery Intro 11:03
    • BigQuery Advanced 10:00
    • Lab: Loading CSV Data Into Big Query 09:04
    • Lab: Running Queries On Big Query 05:26
    • Lab: Loading JSON Data With Nested Tables 07:28
    • Lab: Public Datasets In Big Query 08:16
    • Lab: Using Big Query Via The Command Line 07:45
    • Lab: Aggregations And Conditionals In Aggregations 09:51
    • Lab: Subqueries And Joins 05:44
    • Lab: Regular Expressions In Legacy SQL 05:36
    • Lab: Using The With Statement For SubQueries 10:45
  • 8. Dataflow ~ Apache Beam 10 Videos 01:35:33
    • Data Flow Intro 11:04
    • Apache Beam 03:42
    • Lab: Running A Python Data flow Program 12:56
    • Lab: Running A Java Data flow Program 13:42
    • Lab: Implementing Word Count In Dataflow Java 11:18
    • Lab: Executing The Word Count Dataflow 04:37
    • Lab: Executing MapReduce In Dataflow In Python 09:50
    • Lab: Executing MapReduce In Dataflow In Java 06:08
    • Lab: Dataflow With Big Query As Source And Side Inputs 15:50
    • Lab: Dataflow With Big Query As Source And Side Inputs 2 06:28
  • 9. Dataproc ~ Managed Hadoop 7 Videos 00:51:56
    • Data Proc 08:28
    • Lab: Creating And Managing A Dataproc Cluster 08:11
    • Lab: Creating A Firewall Rule To Access Dataproc 08:25
    • Lab: Running A PySpark Job On Dataproc 07:39
    • Lab: Running The PySpark REPL Shell And Pig Scripts On Dataproc 08:44
    • Lab: Submitting A Spark Jar To Dataproc 02:10
    • Lab: Working With Dataproc Using The GCloud CLI 08:19
  • 10. Pub/Sub for Streaming 9 Videos 01:03:22
    • Pub Sub 08:23
    • Lab: Working With Pubsub On The Command Line 05:35
    • Lab: Working With PubSub Using The Web Console 04:40
    • Lab: Setting Up A Pubsub Publisher Using The Python Library 05:52
    • Lab: Setting Up A Pubsub Subscriber Using The Python Library 04:08
    • Lab: Publishing Streaming Data Into Pubsub 08:18
    • Lab: Reading Streaming Data From PubSub And Writing To BigQuery 10:14
    • Lab: Executing A Pipeline To Read Streaming Data And Write To BigQuery 05:54
    • Lab: Pubsub Source BigQuery Sink 10:20
  • 11. Datalab ~ Jupyter 4 Videos 00:32:26
    • Data Lab 03:00
    • Lab: Creating And Working On A Datalab Instance 10:30
    • Lab: Importing And Exporting Data Using Datalab 12:14
    • Lab: Using The Charting API In Datalab 06:43
  • 12. TensorFlow and Machine Learning 27 Videos 03:49:01
    • Introducing Machine Learning 08:04
    • Representation Learning 10:27
    • NN Introduced 07:35
    • Introducing TF 07:16
    • Lab: Simple Math Operations 08:46
    • Computation Graph 10:17
    • Tensors 09:02
    • Lab: Tensors 05:03
    • Linear Regression Intro 09:57
    • Placeholders and Variables 08:44
    • Lab: Placeholders 06:37
    • Lab: Variables 07:49
    • Lab: Linear Regression with Made-up Data 04:52
    • Image Processing 08:06
    • Images As Tensors 08:16
    • Lab: Reading and Working with Images 08:06
    • Lab: Image Transformations 06:37
    • Introducing MNIST 04:13
    • K-Nearest Neigbors as Unsupervised Learning 07:43
    • One-hot Notation and L1 Distance 07:31
    • Steps in the K-Nearest-Neighbors Implementation 09:32
    • Lab: K-Nearest-Neighbors 14:14
    • Learning Algorithm 10:59
    • Individual Neuron 09:52
    • Learning Regression 07:51
    • Learning XOR 10:27
    • XOR Trained 11:11
  • 13. Regression in TensorFlow 16 Videos 02:25:49
    • Lab: Access Data from Yahoo Finance 02:49
    • Non TensorFlow Regression 08:05
    • Lab: Linear Regression - Setting Up a Baseline 11:19
    • Gradient Descent 09:57
    • Lab: Linear Regression 14:42
    • Lab: Multiple Regression in TensorFlow 09:16
    • Logistic Regression Introduced 10:16
    • Linear Classification 05:25
    • Lab: Logistic Regression - Setting Up a Baseline 07:33
    • Logit 08:33
    • Softmax 11:55
    • Argmax 12:13
    • Lab: Logistic Regression 16:56
    • Estimators 04:10
    • Lab: Linear Regression using Estimators 07:49
    • Lab: Logistic Regression using Estimators 04:54
  • 14. Vision, Translate, NLP and Speech: Trained ML APIs 4 Videos 00:43:52
    • Lab: Taxicab Prediction - Setting up the dataset 14:38
    • Lab: Taxicab Prediction - Training and Running the model 11:22
    • Lab: The Vision, Translate, NLP and Speech API 10:54
    • Lab: The Vision API for Label and Landmark Detection 07:00
  • 15. Networking 7 Videos 00:55:31
    • Virtual Private Clouds 07:04
    • VPC and Firewalls 09:26
    • XPC or Shared VPC 07:39
    • VPN 08:49
    • Types of Load Balancing 06:46
    • Proxy and Pass-through load balancing 09:49
    • Internal load balancing 06:02
  • 16. Ops and Security 8 Videos 01:06:27
    • StackDriver 12:08
    • StackDriver Logging 07:39
    • Cloud Deployment Manager 06:06
    • Cloud Endpoints 03:48
    • Security and Service Accounts 07:44
    • OAuth and End-user accounts 08:31
    • Identity and Access Management 08:31
    • Data Protection 12:02
  • 17. Appendix: Hadoop Ecosystem 17 Videos 02:10:44
    • Introducing the Hadoop Ecosystem 01:35
    • Hadoop 09:43
    • HDFS 10:55
    • MapReduce 10:34
    • Yarn 05:29
    • Hive 07:19
    • Hive vs. RDBMS 07:10
    • HQL vs. SQL 07:36
    • OLAP in Hive 07:34
    • Windowing Hive 08:22
    • Pig 08:04
    • More Pig 06:38
    • Spark 08:55
    • More Spark 11:45
    • Streams Intro 07:44
    • Microbatches 05:41
    • Window Types 05:46